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ABSTRACT

In this paper we present a practical and simple terminal-edge algorithm for parallel refinement of tetrahedral meshes
based on the refinement of terminal-edges and associated terminal stars. A terminal-edge is a special edge in the
mesh which is the longest edge of every element that shares such an edge, while the set of elements that share a
terminal-edge forms a terminal star. We prove that our simple algorithm makes implicit use of the same concepts
and ideas than the more complex Lepp-bisection refinement algorithm, which in turn implies that far more points
are inserted in the interior of the submeshes than in their interfaces. Empirical results illustrating its performance,

stability and scalability are also included.
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1. INTRODUCTION

Parallel mesh generation methods should satisfy the
following four practical criteria: (1) stability in or-
der to guarantee termination and good quality of el-
ements for parallel finite element methods, (2) simple
domain decomposition in order to reduce unnecessary
pre-processing overheads, (3) code re-use in order to
benefit from fully functional, highly optimized, and
fine tuned sequential codes, and (4) scalability. Our
parallel mesh generation algorithm satisfies the first
two requirements, it has high code re-use and scales
well for up to 64 processors. Although, theoretically it
is not scalable for very large number of processors, our
experimental data from up to 64 processors suggest
that the central processor that maintains the global
name space of vertices is not a major bottleneck. This
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suggests that our method is suitable for shared mem-
ory parallel machines and medium size Clusters of
Workstations (CoWs) like the one we used here.

Parallel mesh generation procedures in general overde-
compose the original mesh generation problem into N
smaller subproblems which are meshed concurrently
using P (<« N) processors [8]. The subproblems can
be formulated to be either tightly [26, 6] or partially
coupled [21, 12, 7] or even decoupled [3, 34, 19]. The
coupling of the subproblems determines the intensity
of the communication and the degree of dependency
(or synchronization) between the subproblems. The
parallel mesh generation and refinement method we
present in this paper is an almost decoupled method
(i-e., there is no communication between the subprob-
lems, but a central processor is required to maintain
the global namespace of mesh points, for consistency).

There are two classes of parallel tetrahedral mesh gen-
eration methods: (1) Delaunay and (2) non-Delaunay.
There are very few practical [13, 36, 7, 26, 19] meth-
ods on the parallelization of Delaunay mesh genera-
tion. Moreover, due to the inherent complexity of
the 3-dimensional Delaunay algorithm there are (to



the best of our knowledge) only two practical paral-
lel guaranteed quality Delaunay mesh generation al-
gorithm [13, 26] for polyhedral domains and one for
general domains [13]. The algorithm in [13] starts by
sequentially meshing the external surfaces of the geom-
etry and by pre-computing domain separators whose
facets are Delaunay-admissible (i.e., the precomputed
interface faces of the separators will appear in the final
Delaunay mesh). The separators decompose the con-
tinuous domain into subdomains which are meshed in
parallel using a sequential Delaunay mesh generation
method on each processor. The method is stable.

The algorithm in [26, 6] maintains the stability of the
mesher by simultaneously partitioning and refining the
interface surfaces and volume of the subdomains [10]
—a refinement due to a point insertion might extend
across subproblem (or subdomain) boundaries (or in-
terfaces). The extension of a cavity beyond subdo-
main interfaces is a source of irregular and intensive
communication with variable and unpredictable pat-
terns. Although the method in [26, 6] can tolerate up
to 90% of the communication—by concurrently refin-
ing other regions of the subdomain while it waits for
remote data to arrive—its scalability is of the order
of O(log P), P is the number of processors. Unfortu-
nately, the concurrent refinement can lead to a non-
conforming mesh and/or non-Delaunay mesh [26, 6].
These non-conformities are resolved at the cost of set-
backs which require algorithm /code re-structuring [11]
or at the cost of complete re-triangulation of the global
mesh [35] each time a set of independent points is in-
serted [37].

On the other hand, longest-edge bisection algorithms,
introduced by Rivara [28, 29, 31], appear to be more
popular for the refinement/derefinement of triangu-
lations for adaptive finite element methods both in
the serial and parallel settings [23, 25, 33, 38, 17, 5].
The algorithms are based on the bisection of trian-
gles/tetrahedra by its longest-edge as follows: in two-
dimensions this is performed by adding an edge defined
by the longest-edge midpoint and its opposite vertex,
while in three dimensions the tetrahedron is bisected
by adding a triangle defined by the longest-edge mid-
point and its two opposite vertices.

Jones and Plassman in [17] have proposed a two-
dimensional, 4-triangles parallel algorithm for the re-
finement / derefinement of triangulations, which in or-
der to avoid synchronization tasks uses a Monte Carlo
rule to determine a sequence of independent sets of tri-
angles which are refined in parallel. The algorithm also
takes into account additional triangles to be refined to
obtain a conforming mesh. In order to minimize the
latency and communication costs, a mesh partitioning
algorithm based on an imbalanced recursive bisection
strategy is also used.

Castanos and Savage in [5] have parallelized the non-
conforming longest edge bisection algorithm (illus-
trated in Figure 1 in 2-dimensions) both in 2 and 3
dimensions. In this case the refinement propagation
implies the creation of sequences of non-conforming
edges that can cross several submeshes involving sev-
eral processors. This also means the creation of
non-conforming interface edges which is particularly
complex to deal with in 3-dimensions. To perform
this task each processor P; iterates between a no-
communication phase (where refinement propagation
between processors is delayed) and an interprocessor
communication phase. Different processors can be in
different phases during the refinement process, their
termination is coordinated by a central processor Py.
Duplicated vertices can be created by the non con-
forming interface edges. A remote cross reference of
newly created interface vertices during the interpro-
cessor communication phase along with the concept of
nested elements [4] guarantees the assignment of the
same logical name for these vertices. The load balanc-
ing problem is addressed by using mesh repartitioning
based on an incremental partitioning heuristic.

In this paper we propose a non-Delaunay mesh tetra-
hedral refinement based on a local terminal-edge (and
terminal-star) refinement operation instead of longest
edge. Contrary to the method in [5] the new terminal-
star refinement algorithm completely avoids the man-
agement of non-conforming edges both in the interior
of the submeshes and in the inter-subdomain interface.
This eliminates the communication between subdo-
mains and thus processors. Similarly to Castanos et al.
we use a single processor as coordinator of the global
name space for all mesh points (vertices). However, we
augment the role of the coordinating processor in or-
der to implement a refinement algorithm that is based
on a new and simpler edge-size density function. The
midpoint vertex of each interface terminal-edge is as-
signed a unique global name (as soon as a processor re-
quests its split) which allows the free and independent
processing of the corresponding distributed terminal-
star. Also, load balance is effectively achieved by using
an overdecomposition and the runtime system we pre-
sented in [1, 2].

2. BACKGROUND

In two-dimensions the longest-edge bisection algo-
rithm essentially guarantees the construction of re-
fined, nested and unstructured conforming triangula-
tions (where the intersection of pairs of neighbor tri-
angles is either a common vertex, or a common edge)
of analogous quality as the input triangulation. More
specifically the repetitive use of the algorithms pro-
duce triangulations such that: (a) The smallest angle
a¢ of any triangle t obtained throughout this process,



satisfies that oz > ao/2, where ap is the smallest an-
gle of the initial triangulation. (b) A finite number of
similarly distinct triangles is generated in the process.
(c) For any conforming triangulation the percentage of
bad quality triangles diminishes as the refinement pro-
ceeds. Even when analogous properties have not been
fully proved in three dimensions yet, both empirical
evidence [31, 33] and mathematical results on the fi-
nite number of similar tetrahedra generated over a set
of tetrahedra [14] allow to conjecture that these re-
sults are also valid in general in the three-dimensional
setting.

More recently, the use of two new and related mathe-
matical concepts - the longest-edge propagation path
(Lepp) of a triangle ¢ and its associated terminal
- edge, have allowed the development of improved
Lepp based algorithms for the longest edge refine-
ment / derefinement of triangulations both in 2 and
3-dimensions [30, 22, 32]. Moreover, the application
of Lepp / terminal edge concepts to the Delaunay con-
text have also allowed the development of algorithms
for the quality triangulation of PSLG geometries [22],
for the improvement of obtuse triangulations [15, 24],
and for approximate quality triangulation [27].

Either for improving or refining a mesh, the Lepp
based algorithms use a terminal-edge point selection
criterion as follows. For any target element to be im-
proved or refined, a Lepp searching method is used for
finding the midpoint of an associated terminal-edge
which is selected for point insertion. Each terminal-
edge is a special edge in the mesh which is the common
longest edge of all the elements (triangles or tetrahe-
dra) that share this terminal-edge in the mesh. Once
the point is selected, this is inserted in the mesh. In
the case of the terminal-edge refinement algorithm,
this is done by longest-edge bisection of all the ele-
ments that share the terminal-edge, which is a very
local operation and simplifies both the algorithm im-
plementation and its parallelization. The process is
repeated until the target element is destroyed in the
mesh.

2.1 Longest-edge Vs. Terminal-edge Al-
gorithms in 2-dimensions

The serial pure longest-edge bisection algorithm of Ri-
vara [28], basically works as follows: for any target tri-
angle t to be refined both the longest-edge bisection of
t and the longest-edge bisection of some longest-edge
neighbors is performed in order to produce a conform-
ing triangulation. This task usually involves the man-
agement of sequences of intermediate non conforming
points throughout the process as illustrated in Fig-
ure 1 for the refinement of target triangle ABC; note
that the non conforming points in triangulation (a)
were numbered in their order of creation. Figure 1(b)

shows the final conforming triangulation.

Alternative longest-edge based algorithms (i.e. the 4-
triangles longest-edge algorithm), which use a fixed
number of partition patterns have been also proposed
in [28, 23]. The 4-triangles algorithms maintain only
one non-conforming vertex as the refinement propa-
gates toward larger triangles; however it generalization
to 3-dimensions is rather cumbersome.
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Figure 1: Refinement of triangle ABC by using previous
longest edge refinement algorithm. (a) Intermediate non
conforming triangulation (b) Final refined triangulation

The introduction of the following concepts has allowed
the reformulation of the pure longest-edge algorithm:

Definition 1 An edge E in any valid triangulation
M is a terminal-edge if E is the longest edge of ev-
ery triangle that shares such an edge. In addition the
(one or two) triangles that share E are called terminal-
triangles. In the case that E is an interior edge shared
by a pair of terminal triangles (t1,t2) we shall say that
they define a terminal quadrilateral Q(t1,t2).

Definition 2 Lett, be any triangle in M. The longest
edge propagation path of to (Lepp(to)) is the ordered
list of triangles (to,t1,...tn) such that:

(a) ti+1 is the neighbor of t; by the longest edge of t;
for i=0, ..., n-1

(b) longest edge (tix1) > longest edge (t;) for
1=0,1,... N, where either N=n-1 and t, has a
boundary longest edge, or N=n-2 and (tp—1,tn)
is a pair of terminal triangles

Note that, the Lepp(to) corresponds to a subtriangu-
lation of an associated Lepp polygon, which captures
the local point distribution around ¢¢ in the direction
of its longest edge.

Proposition 1 The terminal-edge associated to any
Lepp(to) is the longest edge between all the edges in-
volved in the subtriangulation Lepp(to) including the
boundary of the Lepp polygon.



Proof. The proof relies in the Lepp definition which
involves finding a set of increasing longest edge trian-
gles, which in turn define an associated Lepp polygon.
The terminal edge is the last longest edge in the se-
quence, which is consequently longer than every edge
of the involved triangles both in the interior and the
boundary of the Lepp polygon.

An explicit Lepp based algorithm for the quality re-
finement of any triangulation was introduced in [30],
where the refinement of a target triangle to essentially
means the repetitive longest-edge bisection of pairs
of terminal triangles sharing the terminal-edge asso-
ciated with the current Lepp(to), until the triangle to
itself is partitioned. For an illustration see Figure 2,
where Lepp(to)={to,t1,t2,t3} over the triangulation
(a), and triangulations (b), (c) and (d) respectively il-
lustrate the first, an intermediate and the last steps in
the Lepp Bisection procedure. Note that the new ver-
tices were enumerated in the order they were created.
The generalization of this algorithm to 3-dimensions
in formulated in next section.
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Figure 2: Lepp refinement of target triangle to

Note that Lepp / terminal edge algorithms use a very
local and conforming mesh refinement operation which
simplifies both the algorithm implementation and its
parallelization in 2 and 3-dimensions.

2.2 Serial Lepp / terminal-edge Algo-
rithms in 3-dimensions

As discussed in [30, 32], the 3-dimensional algorithm
implies a multi-directional Lepp searching task, involv-
ing a set of terminal-edges. In this case each terminal-

edge in the mesh is the common longest-edge of ev-
ery tetrahedron that shares such an edge; and the re-
finement operation involves a terminal-star (the set
of tetrahedra that share a terminal-edge) refinement.
Note that the refinement is confined in the interior of
the terminal-star.

Definition 3 An edge E in any valid tetrahedral mesh
M is a terminal-edge if E is the longest edge of ev-
ery tetrahedron that shares E. In addition the set of
tetrahedra that share E define a terminal-star in 3-
dimensions, and every tetrahedron in o terminal star
is called a terminal tetrahedron.

Definition 4 For any tetrahedron to in M, the Lepp
(to) is a 3-dimensional submesh (a set of contiguous
tetrahedra) recursively defined as follows:

(a) Lepp (to) contains every tethatedron t that shares
the longest edge of to and such that longest edge
(t) > longest edge (to).

(b) For any tetrahedron t' in Lepp(to), the submesh
Lepp (to) also contains every tetrahedron t not
contained yet in Lepp (to) and such that t shares
the longest edge of t' and longest edge (t) >
longest edge (t').

Proposition 2 In 3-dimensions, for any tetrahedron
t in M, Lepp (t) has a finite, variable number of asso-
ctated terminal-edges.

Proof The proof follows from the fact that every tetra-
hedron t in any Lepp (to) has a finite, non fixed num-
ber of neighbor tetrahedra sharing the longest edge of
t; and in the general case more than one of these tetra-
hedra has longest edge greater than the longest edge
of t, which implies that the searching task involved in
Definition 4 is multidirectional, and stops when a fi-
nite number of terminal edges, which are local longest
edges in the mesh, are found in M.

A high level 3-dimensional refinement algorithm for
the local refinement of a tetrahedral mesh, which ex-
tends the 2-dimensional algorithm illustrated in Figure
2 follows:

3D Lepp Bisection Refinement Algorithm
Input { a mesh M and set S of tetrahedra to be
refined in M}
for each t in S do

while t remains in M do



Find Lepp (t) and associated set of terminal
edges (TE)
Refine each terminal star associated to every
terminal edge in TE
end while
end for

Output {mesh M}

In this paper we focus on the parallelization of a global
terminal edge refinement algorithm which makes im-
plicit use of the Lepp concept. This serial algorithm
performs the repetitive refinement of every terminal
edge in the mesh greater than a given tolerance on the
size of the terminal edges as follows:

Terminal-edge Refinement Algorithm

Input {a mesh M and a tolerance parameter b(M)}
Perform successive refinement of the terminal stars
associated to terminal edges greater than b(M) in M
until no terminal edge greater than b(M) remains in
the mesh

Output {refined M}

3. PARALLEL CONSTRAINED
TERMINAL-EDGE BISECTION
ALGORITHM

In this section we consider a simple parallel terminal-
edge bisection algorithm able to perform global refine-
ment of tetrahedral meshes as follows: over each sub-
mesh, the parallel refinement of terminal-edges (and
terminal-stars) is performed until the terminal-edge
size is less than or equal to a global edge-size toler-
ance b(M). A high level description of the method is:

Parallel Refinement Algorithm

1. Read Input {a mesh M and global edge-size toler-
ance b(M)},

2. Partition the mesh M in submeshes M;,i =1...N,

3. Distribute the submeshes M; among the processors,
and

4. Perform constrained refinement over each M;.

5. Output

Note that the mesh mesh M = M(D,V),
with associated surface mesh D and associated
set of wvertices V, is partitioned into N sub-
meshes M1 (Dl, ‘/1), MQ(DQ, Vé), ceey MN (DN7 VN) and
distributed to P processors.

During the parallel refinement, a coordinator proces-
sor assigns a unique global identifier (UGI) to each
new vertex created in each submesh M;.

The refinement over each submesh M; is performed as
follows:

Constrained Refinement over M;

while there exists interior or interface terminal

edges > b in M; do
Stepl. Perform repetitive refinement of every in-
terior terminal edge greater than b in the interior
of M; and request a UGI for all new vertices
Step2. Perform repetitive refinement of every in-
terface terminal edge greater than b in D; and
request their UGI

end while

It is worth noting that stepl (step2) in the while loop
finishes when no more interior (interface) terminal
edges are found. On the other hand, when the while
is completed, no more (interior or interface) terminal
edges greater than b remain in M;.

In order to maintain a global name for all new vertices
in M; an UGI must be assigned to every new vertex
created over D;

Termination The refined mesh M'(D’,V’) is con-
structed by simply computing the union of all of the
D; and V; sets. Because of the UGIs, the resulting
mesh will b conforming with no duplicate vertices on
the submeshes interfaces.

3.1 Global Assignment of Vertices

The coordinator processor Py keeps record of the last
UGTI assigned. This record is incremented successively
as new UGIs are assigned to processors P;. P, acts
like a ticket dispenser, where every ticket number is
unique, and the ticket numbers are dispensed in as-
cending order.

Every time that a processor needs to bisect an interface
edge in D;, this sends a request for a UGI to Py. If
the edge was previously bisected by another processor,
it will return the UGI value assigned to its midpoint.
Otherwise, it will create a new UGI for the vertex
generated on that edge.

3.2 Theoretical Framework

The following lemma assures that the parallel termi-
nal edge algorithm deals with almost decoupled sub-
meshes.

Lemma 3.1 The use of a global edge-size tolerance
parameter b(M) completely avoids interprocessor com-
munication

Proof Since a coordinator processor globally deals
with the information on b(M), no information needs
to be communicated between processors in order to
refine interface terminal edges.



The following results based on the Lepp properties,
assure that most of the refinement task is performed
in the interior of the submeshes M;.

Lemma 3.2 Let E be any interior terminal edge in
M; with length (E) > b(M) and for which there ezists
at least one tetrahedron t in M; such that E belongs
to Lepp(t) and b(M) < longest edge (t) < length (E).
Then the processing of E in the stepl of the algorithm
implies the successive processing (in the same stepl of
the algorithm) of a sequence of new terminal edges in
the submesh M;, and consequently both the refinement
of these terminal edges and their associated terminal
stars is performed in the same stepl.

Proof The result follows from the fact that the paral-
lel algorithm makes implicit use of the 3-dimensional
Lepp concept. In effect, the existence of ¢ implies that
there exists a sequence of interior edges in Lepp(t)
which need to be traversed in order to reach the asso-
ciated terminal edge F in M. Thus in the same stepl
of the parallel algorithm, and in decreasing edge size
order, each one of these edges becomes a terminal edge
in M; greater than b(M) which is refined in the same
stepl.

Lemma 3.3 The processing of an interface terminal
edge greater than b(M) in step2 of the algorithm, in
general implies the introduction of an interior termi-
nal edge greater than b(M), whose processing in turn
implies the introduction of an associated sequence of
terminal-edges to be processed and refined in the next
stepl.

Proof: Every time that the refinement of an interface
terminal edge means the introduction of at least one
interior terminal edge greater than b(M), the Lemma
3.2 applies and the result follows.

Lemma 3.4 The refinement of the interface edges
performed in step2 in the algorithm, in general means
the introduction of a small number of interface ter-
minal edge midpoints as compared with the number of
points introduced in the processing of interior terminal
edges in the step! of the algorithm.

Proof: First note that the processing and refinement
of any interface terminal edge means the implicit use
of a ’surface terminal edge bisection’ algorithm which
is only 1-directional (and not multidirectional) analo-
gously to the Lepp 2-dimensional algorithm discussed
in Section 2.1. From this remark and the use of the
preceding lemmas, the results follows.

Its is worth pointing out that because this is a cen-
tralized algorithm, there is a chance of having a bot-
tleneck on Py. Strategies like latency tolerance and
decentralization can be applied. However, the bottle-
neck behavior is very rare to appear, because of the
geometrical features of the terminal stars bisections.

Lemma 3.5 Given a submesh M;, which has every
terminal edge longer than b on its surface, an inter-
face refinement will lead to many successive interior
refinements.

Proof: The lemma is directly deduced from the pre-
ceding lemmas.

Therefore, after sending a single UGI request for an
interface vertex, a processor will have a considerable
amount of work to do in the interior region before send-
ing another UGI request for an interface vertex. This
result is confirmed by our experiments, which show
no difference in the query-latency both for different
number of processors up to 64.

Finally it is worth noting that Proposition 1 is also
valid in 3-dimensions, which together with Lemmas
above guarantee algorithm termination.

4. PERFORMANCE EVALUATION

The experimental study was performed on 64 node
CoWs with Sun Fire V120 processors. Each processor
is UltraSPARC IIe 650 MHz / 512 KB cache / 1 GB
mem. / 36 GB Ultra2 SCSI disk. The coordinator
processor is a Sun Fire 280R, dual UltraSPARC III
Cu 900 MHz / 8 MB cache / 2 GB mem. / 72 GB
FC-AL disk. All nodes are connected to a 100Mbps
Fast Ethernet Switch.

We have used two geometric models with different
needs both for refinement and load imbalances: a sim-
plified model for a human brain (see Figure 3) and
a semiconductor (see Figure 4). The semiconductor
model shows a more regular point distribution (almost
all tetrahedra in the mesh have the same volume) than
the human brain model.

The stopping criterion is a predefined bound b for the
terminal edges. Next we present preliminary perfor-
mance data from a Java prototype we have imple-
mented. Specifically, we report wall time, average time
for processor Py to assign global name to all interior
and interface points, the average speed (i.e., number
of new tetrahedra per second) and the quality of ele-
ments for different mesh sizes. These data illustrate
good performance, scalability and stability for small
to medium size CoWs i.e., for number of processors
less than or equal to 64.



Figure 3: Surface of the tetrahedra mesh for a simplified
model of a human brain generated from MRI images [16].

Figure 4: Surface of the tetrahedra mesh for a semicon-
ductor.

Table 1: Time in (milliseconds) of three different mesh
sizes (428K, 850K, and 2.1M elements) for the human
brain model for different processor configurations and no
load balancing.

Procs 428,635 854,257 2,141,842

8 14.3 74.6 —
16 5.54 15.0 —
24 4.32 8.39 41.7
32 3.14 8.81 38.7
40 2.85 7.34 37.3
48 1.79 3.93 22.1
56 1.79 3.81 17.6
64 1.50 4.45 18.5
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Figure 5: Wall time (in minutes) for different problem
sizes and number of processors.

Table 1 presents data from the human brain which
suggest that by doubling the number of processors we
reduce the execution time by half. This also suggests
that the coordinating processor (FPp) is not a bottle-
neck for up to 56 processors. However, it becomes a
bottleneck (as it was expected) as we further increase
this number to 64 and beyond. There is a trade-off be-
tween code simplicity and scalability, since with Java
it was very easy to simplify the sequential code in or-
der to use an additional coordinating processor for
maintaining the global name space of the points. A
more scalable parallel implementation of the Lepp al-
gorithm, which uses less code re-use, is in progress. It
is based on the “guided” re-partitioning idea proposed
independently by Shephard’s [12] and Lohner’s [20]
groups at RPI and GMU.

Figure 5 depicts the wall time for different problem
sizes and different number of processors. The wall time
clearly shows that the time decreases as we add more
processors up to 56 processors. The Figure 6 shows
that the method can scale to a few more processors,
since the coordinating processor remains idle for about
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Figure 6: Idle time (in milliseconds) for the coordinating
processor and the human brain model.
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Figure 7: Average time for dealing with new / processing
interface vertices.

400 milliseconds even for 64 processors. However, Ta-
ble 1 shows that the wall time increases, which is due
to a bottleneck in the Network Interface Card of pro-
cessor Py. This suggests that we can remove this bot-
tleneck by using a hierarchy of coordinating processors
in order to scale this method beyond to 60 processors.

Figure 7 depicts the average interface vertex time,
which is the time it takes to assign a UGI for a new
interface vertex. It is important that this value re-
main small and constant. From this graph and the
equivalent graph for the Semiconductor case, we can
ensure that Py is never overwhelmed with requests, for
64 processors.

Figure 8 shows the speed of the refinement i.e., the
number of newly generated tetrahedra per second,
over different problem sizes and number of processors.
These graphs show the speed we can create new tetra-
hedra in the whole system. As we can clearly see,
adding more processors to the system has a linear im-
pact on the speed. The slope of the curve is only re-
lated with the speed of the sequential implementation
for each processor. Note that our current implementa-
tion is in Java which slows down the single processor
performance and thus the overall speed of the parallel

implementation.

Finally, Figure 9 demonstrates (experimentally) for
these two models that the method is stable i,e., with
respect to the percentage of tetrahedra in quality
ranges for different mesh sizes. The 3-dimensional
terminal edge refinement algorithm behaves as the
2-dimensional algorithm with respect to the element
quality distribution, which confirms its expected be-
havior: the quality distribution is quickly displaced to
the right and stabilized when the mesh has 4 times the
size of the initial mesh for the brain test case, and
when the mesh has 12 times the size of the initial mesh
for the semiconductor case. It is worth pointing out
however that the percentage of worst tetrahedra re-
mains quite constant, and even diminishes in the last
refinement steps. More specifically, for the brain and
semiconductor cases, respectively in the initial mesh
there is around a 52% and a 46% of the elements in the
ranges of (0.4, 0.6) and (0.3, 0.5) respectively, while
that in the last refined meshes there is more than 60%
of the elements in the ranges of (0.2, 0.4) for both test
cases; the percentage of elements in the range (0.1)
remains constant throughout the refinement steps and
even diminishes in the semiconductor test case.

5. CONCLUSIONS

We have presented a practical, stable, and efficient
parallel Lepp mesh generation and refinement method
for tetrahedral meshes. The method works for gen-
eral 3-dimensional domains and scales well up to 60
processors - size of most commonly used CoWs. The
parallel algorithm is suitable for large shared memory
computers. The speed of the parallel Lepp method
can improve further by re-implementing the software
in C or C++ and using PREMA [9] for dynamic load
balancing. Our future work will focus on improving
by an order of magnitude the efficiency of this method
by using a simple data structure actualization func-
tion that takes full advantage of the properties of the
terminal-star refinement operation. The current Java
version (we used in this paper) is based on a general
and unnecessarily complex function for 'general’ point
insertion. Also, we plan to implement an out-of-core
version using the MRTS [18] runtime system in order
to generate hundreds of millions of elements on relative
small CoWs.
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